Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 590(7846): 445-450, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408409

RESUMO

The brainstem is a key centre in the control of body movements. Although the precise nature of brainstem cell types and circuits that are central to full-body locomotion are becoming known1-5, efforts to understand the neuronal underpinnings of skilled forelimb movements have focused predominantly on supra-brainstem centres and the spinal cord6-12. Here we define the logic of a functional map for skilled forelimb movements within the lateral rostral medulla (latRM) of the brainstem. Using in vivo electrophysiology in freely moving mice, we reveal a neuronal code with tuning of latRM populations to distinct forelimb actions. These include reaching and food handling, both of which are impaired by perturbation of excitatory latRM neurons. Through the combinatorial use of genetics and viral tracing, we demonstrate that excitatory latRM neurons segregate into distinct populations by axonal target, and act through the differential recruitment of intra-brainstem and spinal circuits. Investigating the behavioural potential of projection-stratified latRM populations, we find that the optogenetic stimulation of these populations can elicit diverse forelimb movements, with each behaviour stably expressed by individual mice. In summary, projection-stratified brainstem populations encode action phases and together serve as putative building blocks for regulating key features of complex forelimb movements, identifying substrates of the brainstem for skilled forelimb behaviours.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Membro Anterior/inervação , Membro Anterior/fisiologia , Destreza Motora/fisiologia , Vias Neurais , Animais , Feminino , Masculino , Bulbo/citologia , Bulbo/fisiologia , Camundongos , Movimento
2.
J Exp Neurosci ; 12: 1179069518808744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450004

RESUMO

Muscle atonia is a major pathognomonic sign of paradoxical sleep (PS; coined REM Sleep), during which dreams mainly occur. In the 1980s, an idiopathic syndrome called REM sleep behavior disorder (RBD) was described in patients endowed with loss of PS paralysis concomitant to abnormal movements, suggesting a dysfunction of PS networks. Another major clinical RBD feature is its prevalent phenoconversion into synucleinopathies as Parkinson's disease in a delay of 10-15 years after diagnosis. Thus, we undertook experiments in rats to disentangle brainstem networks involved in PS, including atonia. We first identified a contingent of pontine glutamate neurons recruited during PS with inputs to the ventromedial medulla (vmM) where they contact γ-aminobutyric acid (GABA)/glycine inhibitory neurons also activated during PS. Here, we further show that these vmM inhibitory neurons send efferents to somatic spinal motoneurons until lumbar levels. As reported for the pontine generator, the genetic inactivation of the vmM inhibitory neurons abolishes atonia during PS without effects on waking locomotion and is sufficient to recapitulate major RBD symptoms. These original data suggest that RBD may reflect a severe dysfunction and/or degeneration linked to a developing synucleinopathic attack targeting specifically neurons that generate PS-specific atonia.

4.
Nat Commun ; 9(1): 504, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402935

RESUMO

Despite decades of research, there is a persistent debate regarding the localization of GABA/glycine neurons responsible for hyperpolarizing somatic motoneurons during paradoxical (or REM) sleep (PS), resulting in the loss of muscle tone during this sleep state. Combining complementary neuroanatomical approaches in rats, we first show that these inhibitory neurons are localized within the ventromedial medulla (vmM) rather than within the spinal cord. We then demonstrate their functional role in PS expression through local injections of adeno-associated virus carrying specific short-hairpin RNA in order to chronically impair inhibitory neurotransmission from vmM. After such selective genetic inactivation, rats display PS without atonia associated with abnormal and violent motor activity, concomitant with a small reduction of daily PS quantity. These symptoms closely mimic human REM sleep behavior disorder (RBD), a prodromal parasomnia of synucleinopathies. Our findings demonstrate the crucial role of GABA/glycine inhibitory vmM neurons in muscle atonia during PS and highlight a candidate brain region that can be susceptible to α-synuclein-dependent degeneration in RBD patients.


Assuntos
Bulbo/fisiologia , Neurônios/fisiologia , Sono REM/fisiologia , Animais , Técnicas de Silenciamento de Genes , Glicina/metabolismo , Masculino , Bulbo/citologia , Hipotonia Muscular/fisiopatologia , Polissonografia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transtorno do Comportamento do Sono REM/fisiopatologia , Ratos Sprague-Dawley , Transmissão Sináptica/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/metabolismo
7.
Brain ; 140(2): 414-428, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007991

RESUMO

SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream-enacting behaviours. These animals display symptoms and behaviours during paradoxical sleep that closely mimic human REM sleep behaviour disorder. Altogether, our data demonstrate that glutamate sublaterodorsal tegmental nucleus neurons generate muscle atonia during paradoxical sleep likely through descending projections to glycine/GABA premotor neurons in the ventral medulla. Although playing a role in paradoxical sleep regulation, they are, however, not necessary for inducing the state itself. The present work further validates a potent new preclinical REM sleep behaviour disorder model that opens avenues for studying and treating this disabling sleep disorder, and advances potential regions implicated in prodromal stages of synucleinopathies such as Parkinson's disease.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Área Pré-Tectal/patologia , Transtorno do Comportamento do Sono REM/patologia , Animais , Contagem de Células , Toxina da Cólera/farmacocinética , Dependovirus/genética , Modelos Animais de Doenças , Transportador 5 de Aminoácido Excitatório/genética , Transportador 5 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Masculino , Área Pré-Tectal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transtorno do Comportamento do Sono REM/etiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Privação do Sono/complicações , Análise Espectral , Estilbamidinas/farmacocinética
8.
PLoS One ; 9(5): e96851, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24811249

RESUMO

GABAergic neurons specifically active during paradoxical sleep (PS) localized in the dorsal paragigantocellular reticular nucleus (DPGi) are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.


Assuntos
Neurônios Adrenérgicos/citologia , Neurônios Adrenérgicos/efeitos dos fármacos , Bulbo/anatomia & histologia , Bulbo/efeitos dos fármacos , Neuroanatomia , Vigília/efeitos dos fármacos , Vigília/fisiologia , Neurônios Adrenérgicos/metabolismo , Animais , Clonidina/farmacologia , Bulbo/citologia , Bulbo/fisiologia , Muscimol/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Sono REM/efeitos dos fármacos , Sono REM/fisiologia
9.
Sleep Med ; 14(8): 714-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23790501

RESUMO

Rapid eye movement sleep behavior disorder (RBD) is a parasomnia characterized by the occurrence of intense movements during rapid eye movement (REM) sleep, also named paradoxical sleep. The neuronal dysfunctions at the origin of the loss of atonia in RBD patients are not known. One possibility is that RBD is due to the degeneration of neurons inducing the muscle atonia of REM sleep. Therefore, in our paper we review data on the populations of neurons responsible for the atonia of REM sleep before discussing their potential role in RBD. We first review evidence that motoneurons are tonically hyperpolarized by gamma-aminobutyric acid (GABA) and glycine and phasically excited by glutamate during REM sleep. Then, we review data indicating that the atonia of REM sleep is induced by glycinergic/GABAergic REM-on premotoneurons contained within the raphe magnus and the ventral and alpha gigantocellular reticular nuclei localized in the ventral medullary reticular formation. These neurons are excited during REM sleep by a direct projection from glutamatergic REM-on neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD). From these results, we discuss the possibility that RBD is due to a specific degeneration of descending REM-on glutamatergic neurons localized in the caudal SLD or that of the REM-on GABA/glycinergic premotoneurons localized in the ventral medullary reticular formation. We then propose that movements of RBD are induced by descending projections of cortical motor neurons before discussing possible modes of action of clonazepam and melatonin.


Assuntos
Tronco Encefálico/fisiologia , Ácido Glutâmico/fisiologia , Glicina/fisiologia , Córtex Motor/fisiologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Ácido gama-Aminobutírico/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...